
NP-complete Problems:
Search Problems

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Polynomial vs Exponential

running time: n n2 n3 2n

less than 109: 109 104.5 103 29

Improving Brute Force Search

Usually, an efficient (polynomial) algorithm
searches for a solution among an exponential
number of candidates:

there are n! permutations of n objects

there are 2n ways to partition n objects
into two sets
there are nn−2 spanning trees in a
complete graph on n vertices

Improving Brute Force Search

Usually, an efficient (polynomial) algorithm
searches for a solution among an exponential
number of candidates:

there are n! permutations of n objects
there are 2n ways to partition n objects
into two sets

there are nn−2 spanning trees in a
complete graph on n vertices

Improving Brute Force Search

Usually, an efficient (polynomial) algorithm
searches for a solution among an exponential
number of candidates:

there are n! permutations of n objects
there are 2n ways to partition n objects
into two sets
there are nn−2 spanning trees in a
complete graph on n vertices

This module

For thousands of practically important
problems we don’t have an efficient
algorithm yet

An efficient algorithm for one such
problem automatically gives efficient
algorithms for all these problems!
$1M prize for constructing such an
algorithm or proving that this is
impossible!

This module

For thousands of practically important
problems we don’t have an efficient
algorithm yet
An efficient algorithm for one such
problem automatically gives efficient
algorithms for all these problems!

$1M prize for constructing such an
algorithm or proving that this is
impossible!

This module

For thousands of practically important
problems we don’t have an efficient
algorithm yet
An efficient algorithm for one such
problem automatically gives efficient
algorithms for all these problems!
$1M prize for constructing such an
algorithm or proving that this is
impossible!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Boolean Formulas

Formula in conjunctive normal form

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

x , y , z are Boolean variables (values:
true/false or 1/0)
literals are variables (x , y , z) and their
negations (x , y , z)
clauses are disjunctions (logical or) of
literals

Satisfiability (SAT)

Input: Formula F in conjunctive normal
form (CNF).

Output: An assignment of Boolean values to
the variables of F satisfying all
clauses, if exists.

Examples

The formula (x ∨ y)(x ∨ y)(x ∨ y) is
satisfiable: set x = 1, y = 0.
The formula (x ∨ y ∨ z)(x ∨ y)(y ∨ z) is
satisfiable: set x = 1, y = 1, z = 1 or
x = 1, y = 0, z = 0.
The formula
(x∨y ∨z)(x∨y)(y ∨z)(z∨x)(x∨y ∨z)

is unsatisfiable.

Satisfiability

Classical hard problem
Many applications: e.g.,
hardware/software verification, planning,
scheduling
Many hard problems are stated in terms
of SAT naturally
SAT solvers (will see later), SAT
competition

SAT is a typical search problem
Search problem: given an instance I ,
find a solution S or report that none
exists
Main property: one must be able to
check quickly whether S is indeed a
solution for I
By saying quickly, we mean in time
polynomial in the length of I . In
particular, the length of S should be
polynomial in the length of I

Definition
A search problem is defined by an
algorithm 𝒞 that takes an instance I and
a candidate solution S , and runs in time
polynomial in the length of I . We say that S
is a solution to I iff 𝒞(S , I) = true.

Example

For SAT, I is a Boolean formula, S is an
assignment of Boolean constants to its
variables. The corresponding algorithm 𝒞
checks whether S satisfies all clauses of I .

Next part

A few practical search problems for which
polynomial algorithms remain unknown

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Traveling salesman problem (TSP)

Input: Pairwise distances between n cities
and a budget b.

Output: A cycle that visits each vertex
exactly once and has total length at
most b.

Delivery Company

https://simple.wikipedia.org/wiki/
Travelling_salesman_problem

https://simple.wikipedia.org/wiki/Travelling_salesman_problem
https://simple.wikipedia.org/wiki/Travelling_salesman_problem

Drilling Holes in a Circuit Board

https://developers.google.com/optimization/routing/tsp

https://developers.google.com/optimization/routing/tsp

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 15

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 13

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 9

Search Problem

TSP is a search problem: given a
sequence of vertices, it is easy to check
whether it is a cycle visiting all the
vertices of total length at most b
TSP is usually stated as an optimization
problem; we stated its decision version
to guarantee that a candidate solution
can be efficiently checked for correctness

Algorithms

Check all permutations: about O(n!),
extremely slow
Dynamic programming: O(n22n)
No significantly better upper bound is
known
There are heuristic algorithms and
approximation algorithms

Comparing to MST
MST
Decision version:
given n cities, connect
them by (n − 1) roads
of minimal total
length

Can be solved
efficiently

TSP
Decision version:
given n cities, connect
them in a path by
(n − 1) roads of
minimal total length

No polynomial
algorithm known!

Comparing to MST
MST
Decision version:
given n cities, connect
them by (n − 1) roads
of minimal total
length

Can be solved
efficiently

TSP
Decision version:
given n cities, connect
them in a path by
(n − 1) roads of
minimal total length

No polynomial
algorithm known!

Comparing to MST
MST
Decision version:
given n cities, connect
them by (n − 1) roads
of minimal total
length

Can be solved
efficiently

TSP
Decision version:
given n cities, connect
them in a path by
(n − 1) roads of
minimal total length

No polynomial
algorithm known!

Comparing to MST
MST
Decision version:
given n cities, connect
them by (n − 1) roads
of minimal total
length

Can be solved
efficiently

TSP
Decision version:
given n cities, connect
them in a path by
(n − 1) roads of
minimal total length

No polynomial
algorithm known!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Hamiltonian cycle

Input: A graph.
Output: A cycle that visits each vertex of

the graph exactly once.

Example

Example

Eulerian cycle

Input: A graph.
Output: A cycle that visits each edge of the

graph exactly once.

Theorem
A graph has an Eulerian cycle if and only if it
is connected and the degree of each vertex is
even.

Eulerian cycle

Input: A graph.
Output: A cycle that visits each edge of the

graph exactly once.

Theorem
A graph has an Eulerian cycle if and only if it
is connected and the degree of each vertex is
even.

Non-Eulerian graph

Eulerian graph

Non-Eulerian graph Eulerian graph

Eulerian cycle

Find a cycle visiting
each edge exactly
once

Can be solved
efficiently

Hamiltonian cycle

Find a cycle visiting
each vertex exactly
once

No polynomial
algorithm known!

Eulerian cycle

Find a cycle visiting
each edge exactly
once

Can be solved
efficiently

Hamiltonian cycle

Find a cycle visiting
each vertex exactly
once

No polynomial
algorithm known!

Eulerian cycle

Find a cycle visiting
each edge exactly
once

Can be solved
efficiently

Hamiltonian cycle

Find a cycle visiting
each vertex exactly
once

No polynomial
algorithm known!

Eulerian cycle

Find a cycle visiting
each edge exactly
once

Can be solved
efficiently

Hamiltonian cycle

Find a cycle visiting
each vertex exactly
once

No polynomial
algorithm known!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Longest path

Input: A weighted graph, two vertices s, t,
and a budget b.

Output: A simple path (containing no
repeated vertices) of total length at
least b.

Example

Example

Example

Example

Shortest path

Find a simple path
from s to t of total
length at most b

Can be solved
efficiently

Longest path

Find a simple path
from s to t of total
length at least b

No polynomial
algorithm known!

Shortest path

Find a simple path
from s to t of total
length at most b

Can be solved
efficiently

Longest path

Find a simple path
from s to t of total
length at least b

No polynomial
algorithm known!

Shortest path

Find a simple path
from s to t of total
length at most b

Can be solved
efficiently

Longest path

Find a simple path
from s to t of total
length at least b

No polynomial
algorithm known!

Shortest path

Find a simple path
from s to t of total
length at most b

Can be solved
efficiently

Longest path

Find a simple path
from s to t of total
length at least b

No polynomial
algorithm known!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Integer linear programming

Input: A set of linear inequalities Ax ≤ b.
Output: Integer solution.

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

LP
(decision version)

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP

Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

LP
(decision version)

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP

Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

LP
(decision version)

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP

Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

LP
(decision version)

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP

Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Independent set

Input: A graph and a budget b.
Output: A subset of vertices of size at least

b such that no two of them are
adjacent.

Example

Example

Independent Sets in a Tree

A maximal independent set in a tree can be
found by a simple greedy algorithm: it is safe
to take into a solution all the leaves.

Independent set in
a tree

Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree

Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree

Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree

Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Next part

It turns out that all these hard problems are
in a sense a single hard problem:
a polynomial time algorithm for any of these
problems can be used to solve all of them in
polynomial time!

Outline
1 Brute Force Search

2 Search Problems

3 Easy and Hard Problems
Traveling Salesman Problem
Hamiltonian Cycle Problem
Longest Path Problem
Integer Linear Programming Problem
Independent Set Problem

4 P and NP

Class NP
Definition
A search problem is defined by an
algorithm 𝒞 that takes an instance I and
a candidate solution S , and runs in time
polynomial in the length of I . We say that S
is a solution to I iff 𝒞(S , I) = true.

Definition
NP is the class of all search problems.

Class NP
Definition
A search problem is defined by an
algorithm 𝒞 that takes an instance I and
a candidate solution S , and runs in time
polynomial in the length of I . We say that S
is a solution to I iff 𝒞(S , I) = true.

Definition
NP is the class of all search problems.

NP stands for “non-deterministic
polynomial time”: one can guess a
solution, and then verify its correctness
in polynomial time
In other words, the class NP contains
all problems whose solutions can be
efficiently verified

Class P

Definition
P is the class of all search problems that can
be solved in polynomial time.

Class P
Problems whose
solution can be
found efficiently

MST
Shortest path
LP
IS on trees

Class NP
Problems whose
solution can be
verified efficiently

TSP
Longest path
ILP
IS on graphs

Class P
Problems whose
solution can be
found efficiently

MST
Shortest path
LP
IS on trees

Class NP
Problems whose
solution can be
verified efficiently

TSP
Longest path
ILP
IS on graphs

Class P
Problems whose
solution can be
found efficiently

MST
Shortest path
LP
IS on trees

Class NP
Problems whose
solution can be
verified efficiently

TSP
Longest path
ILP
IS on graphs

Class P
Problems whose
solution can be
found efficiently

MST
Shortest path
LP
IS on trees

Class NP
Problems whose
solution can be
verified efficiently

TSP
Longest path
ILP
IS on graphs

The main open problem in Computer
Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

The main open problem in Computer
Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

If P=NP, then all search problems can
be solved in polynomial time.

If P̸=NP, then there exist search
problems that cannot be solved in
polynomial time.

If P=NP, then all search problems can
be solved in polynomial time.
If P̸=NP, then there exist search
problems that cannot be solved in
polynomial time.

Next part

We’ll show that the satisfiability problem, the
traveling salesman problem, the independent
set problem, the integer linear programming
are the hardest problems in NP.

	Brute Force Search
	Search Problems
	Easy and Hard Problems
	Traveling Salesman Problem
	Hamiltonian Cycle Problem
	Longest Path Problem
	Integer Linear Programming Problem
	Independent Set Problem

	P and NP

